Journal of Organometallic Chemistry, 64 (1974) 193–204 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SO₃-EINSCHIEBUNGSREAKTIONEN BEI ALUMINIUM-, GALLIUM-, INDIUM- UND THALLIUMTRIALKYLEN*

H. OLAPINSKI, J. WEIDLEIN und H.-D. HAUSEN

Institut fur Anorganische Chemie der Universität Stuttgart, D 7 Stuttgart-80, Pfaffenwaldring 55 (Deutschland)

(Eingegangen den 4. Mai 1973)

Summary

Only one metal—C-bond in trialkyl-aluminium, -gallium, -indium and -thallium can be cleaved by SO_3 in a 1/1 molar ratio reaction. The so formed dialkylmetal alkylenesulfonates can also be obtained by treatment of the trialkyl compounds with alkylenesulfonic acids. The aluminium and gallium derivatives are dimeric or trimeric in benzene solution. The metal atoms are bridged by $R(O=)SO_2$ -groups. In the corresponding indium and thallium compounds the good solubility in water and the dissociation in R_2M^+ and RSO_3^- -ions is remarkable. The vibrational spectra of the dialkylmetal alkylsulfonates are discussed.

Zusammenfassung

 SO_3 vermag in den Trialkylen des Aluminiums, Galliums, Indiums und Thalliums bei der Umsetzung im Verhältnis 1/1 nur eine Metall—C-Bindung zu sprengen. Die entstehenden Dialkylmetallalkansulfonate können auch aus den Trialkylen und Alkansulfonsäuren gewonnen werden. Die Derivate des Aluminiums und Galliums weisen in benzolischer Lösung das zwei- oder dreifache Formelgewicht auf. Die Metallatome sind über $R(O=)SO_2$ -Brücken verknüpft. Bei den entsprechenden Verbindungen des Indiums und Thalliums ist die gute Löslichkeit in Wasser und die Dissoziation in R_2M^+ und RSO_3^- -Ionen bemerkenswert. Die Schwingungsspektren der Dialkylmetallalkansulfonate werden diskutiert.

I. Einleitung

Dialkylmetallderivate der Elemente Al, Ga, In und Tl, bei denen neben den beiden Alkylgruppen noch ein mehratomiger und mehrzähniger Ligand an das Metallatom gebunden ist, lassen sich auf verschiedenen Wegen darstellen:

* Teil der Ref. 1.

والمراجع المراجع المراجع والمتعاد والمتعاد والمراجع والمراجع والمراجع والمراجع والمراجع

1. Durch Einschiebung elektrophiler Agenzien in eine der M-C-Bindungen:

 $R_{3}M + X \longrightarrow R_{2}M - X - R$ $X = SO_{2}, CO_{2}, COS[u.\underline{a}.2 - 5]$

2. Durch Umsetzung der Trialkyle mit H-aciden Stoffen im Verhältnis 1/1 gelangt man in der Regel einfacher zu denselben Verbindungen:

$$R_3M + HX \longrightarrow R_2M - X + RH$$

X = OOCR, OSCR, OOPR₂ [u.ä.2,5-7]

3. In Abwandlung der zweiten Methode können die gesuchten Verbindungen auch aus den Dialkylmetallhalogeniden und den Alkalisalzen der verschiedenen Säuren HX synthetisiert werden. Da jedoch Schwierigkeiten bei der Abtrennung der gebildeten Alkalihalogenide auftreten können, ist dieser Darstellungsweg weniger geeignet:

 R_2 MHal + NaX $\rightarrow R_2$ M-X + NaHal [2]

Sehr ausführlich ist bei den Elementen der III. Hauptgruppe über die Einschiebung von Schwefeldioxid in die Metall-Kohlenstoff-Bindungen von Alkylderivaten berichtet worden [8-10]. Den entsprechenden Umsetzungen mit Schwefeltrioxid ist hingegen nur wenig Beachtung geschenkt worden, obgleich z.B. der Mechanismus der SO₂-Einschiebung [4,11] sinngemäss auf die Reaktion mit SO₃ übertragen werden kann und obgleich auch hier eine Vielzahl neuer Verbindungen zu erwarten ist.

Bekannt sind aber SO_3 -Umsetzungen mit Alkylmetallderivaten von Elementen der IV. Hauptgruppe [12-14]. Neben monomeren Alkansulfonaten des Si und Ge konnten polymere Di- und Trisulfonate des Sn und Pb isoliert werden. In der III. Hauptgruppe ist nur über die Reaktion von höheren Al-trialkylen mit SO_3 -Additionsverbindungen berichtet worden, wobei das Interesse aber dem Hydrolyseprodukt des Reaktionsrückstandes galt [15].

In dieser Arbeit wird über die Reaktionen der einfachen Trialkyle des Aluminiums, Galliums, Indiums und Thalliums (MR_3 mit $R = CH_3$, C_2H_5) mit SO₃ berichtet. Zur Charakterisierung der neu dargestellten Dialkylmetallsulfonate werden vor allem die Schwingungsspektren (IR und Raman) diskutiert.

II. Darstellung und Eigenschaften

Die Trialkyle des Aluminiums, Galliums, Indiums und Thalliums reagieren z.T. sehr heftig mit Schwefeltrioxid unter Bildung von Dialkylmetallalkansulfonaten (Methode 1):

 $R_3M + SO_3 \rightarrow R_2MO_3SR$

M = Al, Ga, In, Tl; R = CH_3 , C_2H_5

Bei der Umsetzung im Verhältnis 1/1 ist nur die Spaltung einer Metall-C-Bin-

dung zu beobachten. Dies ist besonders bei den Aluminiumalkylen bemerkenswert, da hier die entsprechend durchgeführte Reaktion mit z.B. SO_2 zur Spaltung sämtlicher Al-C-Bindungen führt. (Man findet also neben unumgesetztem Trialkyl das Trisulfinat [8,9].) Mit überschüssigem Schwefeltrioxid entstehen, insbesondere bei den Al-Alkylen, auch Di- und Trisulfonate, doch waren diese Produkte nicht in analysenreiner Form vom Monosulfonat abzutrennen.

Für die Gewinnung der Monosulfonate werden die Trialkyle der genannten Elemente in Methylenchlorid (Ga, In, Tl) oder Pentan (Al) als Lösungsmittel mit der stöchiometrischen Menge an frisch sublimiertem SO_3 bei Temperaturen zwischen -30 und -50°C zur Reaktion gebracht [13]. Nach langsamem Anwärmen auf Raumtemperatur können die Dialkylmetallsulfonate isoliert werden.

Diese Verbindungen lassen sich in hoher analytischer Reinheit und nahezu quantitativer Ausbeute auch nach der zweiten Methode aus den Trialkylen und Alkansulfonsäuren darstellen. Diesem Verfahren ist gegenüber der SO3-Einschiebung der Vorzug zu geben, da hierbei das äusserst agressive und schwierig zu behandelnde Schwefeltrioxid durch die einfach zugänglichen und nur wenig empfindlichen Alkansulfonsäuren ersetzt werden kann. Die so erhaltenen Sulfonate sind mit den entsprechenden SO₃-Einschiebungsverbindungen identisch. Es sind farblose Festkörper oder viskose Flüssigkeiten, die im Vakuum unzersetzt sublimiert oder destilliert werden können. Die Empfindlichkeit gegenüber Luftsauerstoff und Wasser und die Löslichkeit in unpolaren organischen Lösungsmitteln nimmt vom Aluminium- zum Thalliumderivat hin stark ab. Während die Al-verbindungen an Luft selbstentzündlich sind und mit Wasser explosionsartig reagieren, sind die Derivate des In und Tl an Luft stabil, in kaltem Wasser löslich und auch in wässriger Lösung längere Zeit beständig. Der Assoziationsgrad der Aluminium- und Galliumsulfonate in Benzol liegt zwischen zwei und drei, Molekulargewichtsbestimmungen der Derivate des Indiums und Thalliums in Wasser lassen die Dissoziation in R_2M^+ und CH_3SO_3 -Ionen erkennen.

Tabelle 1 enthält die wichtigsten physikalischen Daten der untersuchten Dialkylmetall-alkansulfonate. Ausserdem wird gesondert auf die Darstellungsmethode hingewiesen.

TABELLE 1	
PHYSIKALISCH	IE DATEN

Verbindung	Methode	F.p. (°C)	K.p. (°C/mmHg)	Subit.pt. (°C/mmHg)	Assozgrad/Lösm.
(CH ₃) ₂ AlO ₃ SCH ₃	1+2	65-66	140/10-4		3/C6 ^H 6
(C2H5)2A103SCH3	2		140/10 ⁴		2/C ₆ H ₆
(C ₂ H ₅) ₂ AlO ₃ SC ₂ H ₅	1	~	· 180/10 ⁴		2/C ₆ H ₆
(CH ₃) ₂ GaO ₃ SCH ₃	1+2	75—76 (Zers.)		70/10-4	3 ¹⁶
(C ₂ H ₅) ₂ GaO ₃ SCH ₃	2	75		90/10 ⁴	3/C6H6
(C2H5)2GaO3SC2H5	1	48-50 🔷	· 170/10 ⁻¹		2/C6H6
(CH ₃) ₂ InO ₃ SCH ₃	1+2	304 (Zers.)		200/10 ⁴	0.5/H ₂ O [17]
(C ₂ H ₅) ₂ InO ₃ SCH ₃	2	159 (Zers.)		145/10 ⁴	0.5/H ₂ O [17]
(CH ₃) ₂ TIO ₃ SCH ₃	1+2	> 300 (Zers.)		220/10-4	0.5/H ₂ O

Verbindung	δ(SCH ₃)	δ(MCH ₃)	Lösungsm.	Lit.
(CH ₃) ₂ AlO ₃ SCH ₃	-183	+ 47	C ₆ H ₆	diese Arbeit
(CH3)2AISCH3	129	+ 38	CCl4	19
[(CH ₃) ₂ AI] ₂ SO ₄		+ 42	C ₆ H ₁₂	1
(CH ₃) ₂ GaO ₃ SCH ₃	176	+ 4	CC14	diese Arbeit
(CH ₃) ₂ GaSCH ₃	127	+ 3	CCI4	19
[(CH ₃) ₂ Ga] ₂ SO ₄		+ 11	D ₂ O	20
(CH ₃) ₂ InO ₃ SCH ₃	167	+ 4	$\overline{D_2 0}$	diese Arbeit
(CH ₃) ₂ InSCH ₃	-132	- 4	cci4	19
[(CH ₃) ₂ In] ₂ SO ₄		+ 4	D_2O	20
(CH3)2TIO3SCH3	-168	67	D ₂ O	diese Arbeit
[(CH ₃) ₂ Tl] ₂ SO ₄		70	D ₂ O	20
ко _з scн _з			D ₂ 0	1

TABELLE 2 ¹H-NMR-DATEN^a

^aAngaben in Hz bei 60 MHz und TMS als externem Standard, Signale bei höherem Feld (TMS = 0) positiv bezeichnet.

III. Spektren und Strukturen

Die ¹H-NMR-Spektren der Dimethylmetall-methansulfonate des Aluminiums, Galliums und Indiums weisen stets zwei Singulettsignale mit dem Flächenverhältnis 2/1 auf. Zweifelsfrei gehört das intensivere Signal bei höherem Feld den Metail-Methyl-Protonen, das schwächere Signal den S-CH₃-Protonen an. Beim Dimethylthalliumderivat ist die erwartete Aufspaltung des Tl--CH₃-Signals in ein Dublett, bedingt durch die Kopplung mit den Tl-atomkernen, zu beobachten [18]. ($J(2^{0.5} \text{ TlCH}) = 404 \text{ Hz}$, die Kopplungskonstante für ²⁰³ Tl ist um 3-4 Hz geringer.)

In Tabelle 2 sind die ¹H-NMR-Daten der Sulfonate, sowie die Werte der chemischen Verschiebungen einiger zum Vergleich herangezogener Verbindungen angegeben.

Neben den Protonenresonanzspektren gestatten vor allem die Schwingungsspektren Aussagen bezüglich der Strukturen der Sulfonate. Besonders einfach können die Spektren die Dialkylmetall-methansulfonate des Indiums und Thalliums in wässriger Lösung zugeordnet werden. (Da Wasser oder D_2O nur bei der Aufnahme von Ramanspektren geeignete, linienarme Lösungsmittel darstellen, werden im folgenden ausschliesslich diese Spektren diskutiert.) Neben den Linien des Anions CH₃SO₃, welche in der wässrigen Lösung von KO₃SCH₃ frequenzgleich auftreten [21], sind die Ramanlinien der R_2M^+ -Ionen zu beobachten. Von Interesse ist die Struktur dieser (hydratisierten) Kationen, die entweder linear (Symmetrie $D_{\infty h}$) oder gewinkelt (Symmetrie C_{2n} gebaut sein können. Auch allein mit Hilfe der Ramanspektren ist eine Unterscheidung moglich, wobei den MC₂-Valenzschwingungen besondere Bedeutung zukommt.

Das seit längerer Zeit bekannte $(CH_3)_2 Tl^+$ -Ion ist linear gebaut. Wie in den Ramanspektren einer Vielzahl anderer Dimethylthalliumverbindungen [18]

ist auch im Spektrum des in D_2O gelösten $(CH_3)_2 TlO_3 SCH_3$ nur die symmetrische TlC₂-Valenzbewegung zu beobachten. Die zugehörige asymmetrische Schwingung tritt nur im IR-Spektrum auf.

Die beiden Dialkylmetallmethansulfonate des Indiums gehören zu den wenigen metallorganischen Verbindungen dieses Elements, die sich ohne Zersetzung (d.h. ohne weitere Alkanabspaltung) in Wasser lösen und in diesem Lösungsmittel unter Bildung von $R_2 In^+$ -Kationen dissoziieren. Wie die folgende Zusammenstellung erkennen lässt, wird die Frequenzlage der InC₂-Schwingungen durch die Art und die Ladung der verschiedenen Anionen nicht wesentlich beeinflusst. Man darf von "freien" $R_2 In^+$ -Ionen sprechen:

Kation	Anion	$v_{as}[InC_2] (cm^{-1})$	$v_{s}[InC_{2}] (cm^{-1})$
(CH ₃) ₂ In ⁺	$CH_{3}COO^{-}[22], CH_{3}COS^{-}[23]$ $CI^{-}, CIO_{4}^{-}[24], SO_{4}^{-}[20]$ $CH_{3}SO_{3}^{-}$	564-559	503—500
(C ₂ H ₅) ₂ In ⁺	сн ₃ соо ⁻ [22], сн ₃ so ₃ -	525-522	478-475

Mit Ausnahme des Dimethylindiumperchlorats [24] ist in den Ramanspektren der H₂O- oder D₂O-Lösungen aller genannten Verbindungen neben der symmetrischen InC2-Schwingung auch die asymmetrische Bewegung zu beobachten. Die Dialkylindiumkationen müssen demnach gewinkelt (Symmetrie C_{2n}) sein. Die ungewöhnlich hohen Intensitätsunterschiede zwischen den beiden Ramanlinien der zur Diskussion stehenden InC2-Schwingungen sprechen (zumindest beim Dimethylindiumion) für einen grossen C-In-C-Valenzwinkel. Einfache Winkelberechnungen, denen neben den angeführten spektroskopischen Daten In-C-Bindungsabstände zwischen 2.06 und 2.25 Å zugrunde liegen [25], ergaben für das $(CH_3)_2 In^+$ -Ion Werte von etwa 155°, für das Diäthylkation wurden in grober Näherung 130° errechnet. Dass der Ansatz der Winkelberechnungen in der Grössenordnung richtige Ergebnisse wiedergibt, bestätigen die kürzlich publizierten Kristallstrukturuntersuchungen an Dimethyl- und Diäthylindiumacetat [26,27]. Hier wurden C-In-C-Winkel von 152° (Methyl) und 126° (Athyl) ermittelt. Da die in beiden Arbeiten gefundenen Abstände und Winkel des Liganden mit denen "freier" Acetationen (Lithiumacetat) übereinstimmen und da die In-O-Abstände mit 2.37-2.46 Å deutlich länger sind, als in anderen sauerstoffkoordinierten Verbindungen des In (etwa 2.2 Å), ist anzunehmen, dass auch in den festen Dialkylindiumacetaten ein weitgehend ionogener Aufbau vorliegt. Der Vergleich mit den Verhältnissen in wässriger Lösung ist daher gerechtfertigt.

In diesem Zusammenhang scheint die gemeinseme Betrachtung der bislang bekannten Dimethylmetallkationen von Elementen der III. Hauptgruppe von nutzen [28]. Auf Grund schwingungsspektroskopischer und röntgenographischer Untersuchungen [18] besitzt nur die $(CH_3)_2 Tl^+$ -Spezies dieselbe lineare Struktur, wie das entsprechende neutrale Dialkyl des Quecksilbers bzw. das zweifach positiv geladene und ebenfalls isoelektronische $(CH_3)_2 Pb^{2+}$ -Kation [29]. Die Stabilität der Dialkylkationen in Wasser nimmt vom Tl zum Ga hin ab, in derselben Richtung nimmt nachweislich die Stabilität der gebildeten Aquoionen zu [30]. Während bei den meisten Dimethylthallium-

	5	
	Z	
	S	
	N	
	Ħ	ļ
	N	
	3	
	a	
	ធ	
	A1	
	Z	İ
	Ĕ	
	Ы	
	S Z	
	Ξ.	
	2	
	3	
	8	
	õ	
	ã	
	z	
	2	
	2	l
	ä	
	1S	
	E	
	R	
	a	
	z	
	2	ł
	E	
	E	l
	1SI	
	¥.	
~	M	
E1	æ	
Е	9	
BE	5	
Z	÷	
E	-	

IR- UND RAMANS	PEKTREN DER	FESTEN BZW	V IN D	2 0 GELÖSTEN	SULFONATE	E DES INDIUMS	LUND	CHALLIUMS ^a
(CH ₃) ₂ InO ₃ SCH ₃				(CH3)2TI03SC	H ₃			Zuordnung
IR(Int.) fest	RE(Int.) fest	RE(Int.) D20-Lös.		IR(Int.) fest	RE(Int.) fest	RE(Int.) D2 0-Lös.		
3030 (Sch)	3035 s-m 3024 m	3034 s-m	dþ	3020 s-m 3004 m	3030) 8-m 3015 } 8-m	3033 m(br)	đp	ν _{as} (CH ₃ S)
[2928]	2946 st	2965 st	đ	[2929]	2940 st	2047 sst	с.	ν _s (CH ₃ -S)
(1421) [1414]	[1425] [1420]	[1432]		[1412]	1432 8 1419 8	1429 s		έ _{ns} (CH ₃ -S)
1328 s-m 1318 s				1328)m 1303)m				δ _s (CH ₃ -S)
1180 sst(br)	[1172]	1222 35(br)	dþ	1185 sst(br)	[1181]	[1201]		ν _{ns} (SO3)
1062 st-m	1063 st	1055 st	đ	1045 st	1048 sst	1053 st	a	ν _s (SO ₃)
	970 s-m	973 s	dþ	962 ss	967 s	973 <i>8</i> 3	dp	ρ(CH ₃ -S)
782 m	783 m	788 st-m	đ	771 st	774 m	788 st-m	d	₽(C−S)
571 m	[552]	666 s-m	đ	567 555 543	555) 544)m	560 s·m (br)	đ	δ ₈ (SO3)
617 m	616 (Seh)	532 ss(Sch)		521 st	523 s-m	535 ss	dþ	δ _{as} (SO3)
340 s	348 s	360 s-m	đþ	339 s-m 333 m	342 s 337 s	348 s	dþ	δ(CSO)
3002 s-m	3013 } s	3002 s	đþ	[3020]	[3030]	[3033]		и _{аs} (сн ₃ —М)
2928 s-m	2931 st-m	2930 st-m	đ	2929 st-m	[2940]	[2947]		v _s (CH ₃ -M)
1421} s(br) 1414	1425) ^s 1420 ^{3s}	1432 s-m	đþ	1412 s	[1432] [1419]	[1429]		}δ _{as} (CH ₃ −M)
[1180]	1172 sst 1167 s-m(Sch)	1186 sst	đ	[1186]	1181 st 1177 st-m	1201 st	a	}δ _s (CH ₃ −M)
740 st	720 ss(br)	720 as(br)	dp	808 st-m(br)				ρ (CH ₃ -M)
5 52 st	552 m	[566] ?		[567] ?	I	1		$\nu_{\rm as}(\rm MC_2)$
[617] ?	610 sst	603 sst	đ	•	510 sst	503 ast	G	ν _s (MC ₂)
^d Angaben in cm ⁻ anderer Stelle bere	-1, 35t = 96hr stark its angeführt.	, st = stark, m	= miti	el, s = schwach,	(Sch) = Schult	er und (br) = bre	eit. Wer	te in [] sind an

.....

.

198

verbindungen das ionische Bauprinzip auch im Kristall erhalten bleibt, ist bei den homologen Verbindungen des Indiums und Galliums in zunehmendem Masse mit kovalenten Metall-Ligand Bindungsanteilen zu rechnen. Bei sinnvollen Koordinationsverhältnissen der Zentralatome ist deshalb eine Abnahme des C-M-C-Valenzwinkels zu erwarten. Diese Überlegungen stehen in Einklang mit unseren Beobachtungen.

Dass bei den bisher besprochenen Sulfonaten des Indiums und Thalliums auch im festen Zustand ein weitgehend ionisches Bauprinzip vorliegt, zeigt die grosse Ähnlichkeit der Festkörperspektren mit denen der wässrigen Lösungen. Da diese Dialkyl-alkansulfonate aber flüchtig sind (wenn auch erst bei Temperaturen über 150°C im Hochvakuum) und sich in Pyridin lösen, können kovalente Metall-Sauerstoff Bindungsanteile nicht ausgeschlossen werden. Dafür spricht auch die Tatsache, dass die wichtigen S-O-Valenzschwingungen im Vergleich zu den Lösungen stark verbreitert sind und geringfügige Frequenzverschiebungen zeigen. Bei den charakteristischen Frequenzen der MR₂-Gruppen sind ebenfalls Veränderungen festzustellen. Dennoch muss das $CH_3 SO_3$ -Ion vorgebildet sein, denn sonst wären mehr als nur zwei S-O-Valenzschwingungen zu erwarten. Diese Beobachtung ist aber nur dann zu erklären, wenn den Zentralatomen In und Tl Koordinationszahlen grösser als vier (evtl. 5 oder 6) zugeordnet werden, z.B.:

Kristallstrukturanalysen an vergleichbaren, ebenfalls weitgehend ionisch gebauten metallorganischen Verbindungen des Indiums und Thalliums haben erwiesen, dass bei diesen Metallen die Koordinationszahlen 5 oder 6 keineswegs ungewöhnlich sind [26,27,31,32].

In Tabelle 3 sind die IR- und Ramanfrequenzen der festen und in D_2O gelösten Dimethylmetallmethansulfonate des Indiums und Thalliums enthalten. Zur besseren Übersicht ist eine Unterteilung in die Daten des anionischen und kationischen Bausteins (CH₃SO₃⁻ und R₂M⁺) vorgenommen worden.

Die Sulfonate des Aluminiums und Galliums unterscheiden sich nicht nur in ihren chemischen und physikalischen Eigenschaften, sondern vor allem auch in ihren Schwingungsspektren auffällig von den Derivaten des In und Tl. Die Spektren der festen, geschmolzenen oder gelösten (CCl₄) Aluminium- oder Galliumprodukte zeigen nämlich drei S-O-Valenzschwingungen. In Einklang mit den ¹ H-NMR-Daten kann das für die dimeren Moleküle nur mit Ringstrukturen der Art I oder II erklärt werden.

(Fortsetzung siehe S. 202)

TABELLE 4 IR- UND RAMANFRI	equenzen von (ch ₃)2AlO ₃ SCH ₃	UND (CH ₃) ₂ GaO ₃ SCH ₃	:	!
(CH ₃) ₂ AlO ₂ SCH ₃			(CH ₃) ₂ GaO ₃ SCH ₃		Zuordnung
IR (Int.) Schmelze	RE (Int.) <i>a</i> Schmeize		IR (int.) fest	RE (Int.) fest	
3033 s-m	3038 m	dþ	3027 r m	3042} 3034}m	ν _{as} (CH ₃ -S)
[2943]	[2964]		2987 st-m	3003} s.m	ν _{ng} (CH ₃ -M)
2043 st-m	2965 st	р	2943 (Sch)	2961 st	ν _s (CH ₃ -S)
2900 s-m	2903 st-m	ď	2913 (Sch)	2926 st	ν _s (CH ₃ -M)
1419 ss	1426}8-m	dþ	1424 m	1434 s 1423 s-m }	δ _{as} (CH ₃)(M+S)
1340 m			1340 m(Sch) ["]		δ _s (CH ₃ -S)
1308 sst	1320 s(br)	<u>D</u> a	1280 (Sch)} 1274 sst	1285 s(br)	л (З=О)
1201 st	1206 st-m	8	1210 . m	1214 s 1200 st-m}	δ _s (CH ₃ -M)
1150 sst(br)	1155 888	dp7	1163 sst(br)	1160 sss(br)	ν _{us} (SO ₂)
1065 sst(br)	1088 st-m 1072 (Sch)	a	1060 (Sch) 1025 sst(br)	1078 s 1060 st-m	$ u_{\mathbf{a}}(\mathrm{SO}_2)\mathrm{Gleicht.}$
980 st-m	985 s	ę	966 m	975 s(br)	ρ(CH ₃ -S)
708 st	801 sst	G	786 st	790 st	µ(C−S)
			750 st 715 (Sch) }	710 s	ρ(CH ₃ -Ga)
708 at(br)	716 s-m	¢þ			$\rho \left({\rm CH}_3 - {\rm Al} \right) + \nu_{\rm as} ({\rm AlC}_2)$
			618 st-m	620 m	ν _{as} (GaC ₂)
620 (Seh)	625 (Sch)	dþ	[618]	[620]	6 (SO ₂)
598 m	698 st	â	[548]	658 sst	v _s (MC ₂)
566 (Sch) 542 st-m	566 st 543 (Sch)	đ dp	548 st 526 st-m	[558] 526 s-m }	δ _s (SO ₂)Gleicht. Gegent.

I

1

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(Sch) 1(br)	440 s(br)	P	405 s-m	402 s-m }	л(М—О)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		388) s(br) 350) s(br)	đ	348 s-m	345 s-m	5 (CSO)
$ \begin{array}{cccc} 216 \text{ s-m} & dp & & 180 \text{ ss(Sch)} \\ 171 \text{ st} & dp & & 140 \text{ Sch} (br) \\ 147 \text{ st} & dp & & 120 \text{ st} \end{array} $		316). 294}m	G.	280 m	276 m	δ _s (MC ₂) + δ (CMO)
		216 s-m 171 st 147 st	ප් ප් ප්		180 ss(Sch) 140 Sch (br) 120 st	δ (Ring) + δ (OMC)

TABELLE 6 ANALYTISCHE DATEN

Ausgangsverbir	ndungen g(mmol)		Reaktionsprodukt	Aus-	Analysen: gei	(, (ber.)		
MR3	so _a	H0 (02)SCH3		peute %	C (%)	(%) H	Met. (%)	S (%)
4.8 (66.6)	5.3 (66.1)		(CH2), AlO2SCH2	667	23.7	5,92	17.9	20.9
7.1 (98.6)	1	9.4 (97.8)	(CH3) AIO SCH3	191	(23.68)	(2.96)	(17.73)	(21.07)
8.4 (73.6)		7.0 (72.8)	(C,Hc), AloaSCHa	78	33.1	7.34	15.0	17.9
		•	2 8 7		(33.33)	(1.27)	(14.97)	(17.79)
10,1 (88.5)	7.0 (87.4)	I	(C2H4)2AlO3SC2H5	5 5	37.4	7.90	14.0	n. best.
			1 		(37.10)	(1.78)	(13.89)	(16.51)
3.2(27.9)	2.2 (27,5)	1	(CH3), GaO3SCH3	101	18.3	4.47	35.8	16.7
4.6 (40.1)		3.8 (39.5)	(CH ₃), GaO ₃ SCH ₃	92 J	(18.49)	(4.65)	(35.77)	(16.45)
7.7 (49.1)		4.7 (48.9)	(C,H,), GaOaSCHa	88	26.9	5.88	31.3	14.5
		•	2 1 2		(26.94)	(5.88)	(31.27)	(14.38)
5.8 (37,0)	2,9 (36,2)	I	(C,Hc), GaO ₃ SC,Hc	78	30.2	6.33	29.4	13.4
	•				(30.41)	(6.38)	(29.42)	(13.53)
2.6 (16.2)	1.26 (15.7)	1	(CH ₃), InO ₃ SCH ₃	171	15.0	3.77	47.7	13,4
3.7 (23.1)	1	2.2 (22.9)	(CH ₃) ₂ InO ₃ SCH ₃	937	(12.01)	(3.78)	(47.84)	(13,36)
4.2 (20.8)	1	(19.8)	(CoHe), InOaSCIIa	06	22.3	4.87	42.6	12.0
			1 2 2 2		(22.40)	(4:80)	(42,84)	(11,96)
4.9 (19.6)	1.5(18.7)	I	(CH ₃) ₂ TIO ₃ SCH ₃	85 ₁	11.0	2.67	61.9	9.7
5.2 (20.8)	I	1.9 (19.8)	(CH ₃) ₂ TIO ₃ SCH ₃	967	(10.93)	(2.75)	(62.02)	(8.73)

Erweitert man diese Ringe sinngemäss um eine Einheit, so resultieren für die trimeren Sulfonate zwölf- bzw. sechsgliedrige Ringgerüste. Eine Unterscheidung der Strukturmöglichkeiten I oder II ist mit Hilfe der Schwingungsspektren durchzuführen. Die Modelle des Bauprinzips I erfordern drei S-O-Valenzschwingungen (eine v(S=O), je eine v_{as} und $v_s(S \leq O)$) im Bereich zwischen 1000 und 1300 cm⁻¹, also etwa vergleichbar mit den beiden S-O-Schwingungen der wasserlöslichen Sulfonate des Indiums und Thalliums. In diesem Bereich sind bei Vorliegen der Strukturform II nur zwei S-O-Valenzfrequenzen zu erwarten $(v_{as} \text{ und } v_{s}(S \leq 0))$. Die dritte, der S-O-Einfachbindung angehörende Schwingung muss um oder unter 950 cm⁻¹ auftreten [33-35]. Da die drei S-O-Valenzschwingungen bei allen Dialkylmetallalkansulfonaten des Al und Ga stets im Bereich zwischen 1000 und 1300 cm⁻¹ zu beobachten sind, die Bedingungen für die Modelle II also nicht erfüllt sind, kann dieses Strukturprinzip ausgeschlossen werden. Den zweifach assoziierten Verbindungen darf demnach ein Achtring-, den trimeren Produkten ein Zwölfringgerüst zugeordnet werden. Dieselbe Struktur besitzen möglicherweise die Sulfonate des Indiums und Thalliums im Gaszustand. Im Kristallverband sind aber beim In und Tl (im Gegensatz zum Al und Ga) die Einzelmoleküle über die "freien" S=O-Gruppen miteinander verknüpft.

In erster Näherung können die Spektren der Ringmoleküle aus den Schwingungen der $RS(=O)O_2$ - und der R_2MO_2 - Gruppierungen zusammengesetzt werden. Wie bei einer Reihe vergleichbarer metallorganischer Verbindungen des Aluminiums und Galliums [2] können auch hier die Valenzbewegungen der Brückengruppen ($RS(=O)O_2$) als charakteristische Schwingungen der Ringe angesehen werden. Man muss neben den wenig wahrscheinlichen, planaren Grundgerüsten eine Anzahl gewellten Strukturformen in Betracht ziehen. Es ist jedoch mit Hilfe des vorhandenen Spektrenmaterials nicht möglich, eine eindeutige Strukturbestimmung durchzuführen. Da exakte IRund Raman-spektren der gelösten oder geschmolzenen Sulfonate fehlen, ist auch die Existenz verschiedener Symmetrieformen nebeneinander nicht auszuschliessen.

In Tabelle 4 sind die spektroskopischen Daten der beiden einfachsten Vertreter der Dialkylmetallalkansulfonate des Aluminiums und Galliums einander gegenübergestellt. Reichhaltiges Vergleichsmaterial erleichterte die Zuordnung der Schwingungen der MR₂-Gruppierungen [2,36].

IV. Experimentelles

Die im Handel erhältlichen Ausgangsverbindungen (die beiden Aluminiumtrialkyle, SO_3 , CH_3SO_3H) wurden durch Destillation oder Sublimation sorgfältig gereinigt. Die Alkyle des Galliums erhielten wir durch Umalkylierung aus GaBr₃ und den entsprechenden Aluminiumtrialkylen [37]. Die Ausgangsalkyle des Indiums und Thalliums wurden nach bekannten Grignard-verfahren hergestellt [38,39].

Für die Reaktionen mit SO3 versetzt man (unter Reinststickstoff als Schutzgas) die CH₂Cl₂-Lösungen der Trialkyle des Ga, In, Tl unter heftigem Rühren langsam mit stöchiometrischen Mengen verdünnter Methylenchloridlösungen von SO_3 . Die Temperatur wird auf etwa $-30^{\circ}C$ eingestellt. Um Folgereaktionen zu vermeiden arbeitet man mit einem geringen Unterschuss an Schwefeltrioxid. Nach beendeter Zugabe erwärmt man unter stetigem Rühren langsam auf Raumtemperatur. Da zumeist Feststoffe anfallen, die in Methylenchlorid nur mässig löslich sind, bereitet die Abtrennung der Reaktionsprodukte vom Lösungsmittel keine Schwierigkeiten. Zur Reinigung werden die Alkansulfonate im Hochvakuum sublimiert oder destilliert. (S. Tab. 1) Bei den Aluminiumalkylen kann aus Sicherheitsgründen nicht mit CH₂Cl₂ als Lösungsmittel gearbeitet werden [40]. Hier wurde die SO₃-Einschiebung in Pentan durchgeführt. In die auf -40 bis -50° C gekühlte Lösung der Trialkyle kondensiert man die errechnete Menge an reinem SO_3 langsam ein. Bei zu raschem Kondensieren kann es auch zu Reaktionen des Säureanhydrids mit dem Lösungsmittel kommen, was an der Schwarzfärbung des Reaktionsgemisches zu erkennen ist. Die Al-sulfonate können nach Abtrennen des Lösungsmittels ebenfalls durch Destillation gereinigt werden. Die Umsetzungen mit Methansulfonsäure erfolgten bei den Alkylen der drei schweren Elemente in analoger Weise in CH₂Cl₂. Die Reaktionstemperaturen lagen bei etwa 0°C. Im Falle der Aluminiumverbindungen wurde eine Suspension von CH₃SO₃H in Pentan bei -30°C portionsweise zur Lösung des Alkyls in Pentan zugegeben. In Tabelle 5 sind die analytischen Daten der dargestellten Dialkylmetallalkansulfonate und die Ausbeuten zusammengestellt.

Die IR-Spektren wurden in kapillarer Schicht als Nujol- oder Hostaflonverreibungen oder als Schmelzen zwischen CsBr oder KBr Fenstern mit den Beckman Geräten IR 10 oder 12 aufgenommen. Für die Aufnahme der Ramanspektren stand ein Spektrophotometer der Firma Coderg PH 0 zur Verfügung. Die Anregung erfolgte mit der blaugrünen 4880 Å -Linien eines Argon-Krypton Mischgaslasers.

Dank

Herrn Prof. Dr. E. Allenstein danken wir vielmals für die Bereitstellung von Institutsmitteln. Herrn Dr. R. Reinmann von der Schweizerischen Aluminium-AG gilt unser Dank für die Überlassung von metallischem Gallium. Der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie sind wir für die gewährten Sachbeihilfen zu grossem Dank verpflichtet.

- 1 H. Olapinski, Dissertation Universität Stuttgart, 1973.
- 2 J. Weidlein, J. Organometal. Chem., 49 (1973) 257, S. dort. weitere Lit.
- 3 M.F. Lappert und B. Prokai, Advan. Organometal. Chem., 5 (1967) 225.
- 4 W. Kitching und C.W. Fong, Organometal. Chem. Rev., Sect. A, 5 (1970) 281.
- 5 J. Weidlein, J. Organometal. Chem., 32 (1971) 181.
- 6 B. Schaible, Dissertation Universität Stuttgart, 1973.
- 7 B. Schaible und J. Weidlein, J. Organometal. Chem., 35 (1972) C7. H. Olapinski, B. Schaible und J.
- Weidlein, J. Organometal, Chem., 43 (1972) 107.
 8 E.B. Baker und H.H. Sisler, J. Amer. Chem. Soc., 75 (1953) 5193. K. Ziegler, F. Krupp, K. Weyer und W. Larbig, Justus Liebigs Ann. Chem., 629 (1960) 251, S. dort weitere Lit.
- 9 J. Weidlein, J. Organometal. Chem., 24 (1970) 63; Z. Anorg. Allg. Chem., 366 (1969) 22.
- 10 A.T.T. Hsieh, J. Organometal. Chem., 27 (1971) 293. A.G. Lee, J. Chem. Soc., A, (1970) 467.
- 11 G. Vitzthum und E. Lindner, Angew. Chem., 83 (1971) 315.
- 12 R.W. Bott, C. Eaborn und T. Hashimoto, J. Organometal. Chem., 3 (1965) 442.
- 13 H. Schmidbaur, L. Sechser und M. Schmidt, J. Organometal. Chem., 15 (1968) 77, S. dort weitere Lit.
- 14 J. Dubac und P. Mazerolles, J. Organometal, Chem., 20 (1969) P5.
- 15 G.C. Bassler und A.F. Stang, DAS 1158057, Chem. Abstr., (1964) 10550.
- 16 G.E. Coates und R.N. Mukherjee, J. Chem. Soc., (1964) 1295.
- 17 H. Olapinski und J. Weidlein, J. Organometal. Chem., 35 (1972) C53.
- 18 H. Kurosawa und R. Okawara, Organometal. Chem. Rev. Sect. A, 6 (1970) 65, S. dort weitere Lit.
- 19 G. Mann, Dissertation Universität Stuttgart, in Vorbereitung.
- 20 H. Olapinski und J. Weidlein, J. Organometal. Chem., 54 (1973) 87.
- 21 A. Simon und H. Kriegsmann, Chem. Ber., 89 (1956) 1718; Z. Phys. Chem., 204 (1955) 369; W.K. Thompson, Spectrochim. Acta, Part A, 28 (1972) 1479.
- 22 H.-U. Schwering, Dissertation Universität Stuttgart, 1973.
- 23 H.-J. Guder, Diplomarbeit Universität Stuttgart, 1972.
- 24 C.W. Hobbs und R.S. Tobias, Inorg. Chem., 9 (1970) 1998.
- 25 J. Weidlein und G. Tatzel, unveröffentlicht.
- 26 F.W.B. Einstein, M.M. Gilbert und D.G. Tuck, J. Chem. Soc., Dalton, (1973) 248.
- 27 H.-D. Hausen, J. Organometal. Chem., 39 (1972) C37; H.-D. Hausen und H.-U. Schwering, Z. Anorg. Alig. Chem., 398 (1973) 119.
- 28 J. Weidlein und H.D. Hausen, Vortrag Reihe A. Chemiedozententagung in Münster, 1973:
- 29 M.G. Miles, J.H. Patterson, C.W. Hobbs, M.J. Hopper, J. Overend und R.S. Tobias, Inorg. Chem., 7 (1968) 1721.
- 30 R.S. Tobias, M.J. Sprague und G.E. Glass, Inorg. Chem., 7 (1968) 1714, S. dort weitere Lit.

- 31 H.-D. Hausen, Z. Naturforsch. B, 27 (1972) 82; H.-D. Hausen und H.-J. Guder, J. Organometal. Chem., 57 (1973) 243.
- 32 T.L. Blundell und H.M. Powell, Chem. Commun., (1967) 54.
- 33 A. Simon, H. Kriegsmann und H. Dutz, Chem. Ber., 89 (1956) 2378, 2390.
- 34 S. Detoni und D. Hadzi, Spectochim. Acta, 13 (1957) 601.
- 35 H. Siebert, Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie, Springer-Verlag, Heidelberg, 1966.
- 36 J. Weidlein, J. Organometal. Chem., 17 (1969) 213.
- 37 R. Dötzer und F. Engelbrecht, DAS 1158977 vom 14.5.1960.
- 38 E. Todt und R. Dötzer, Z. Anorg. Allg. Chem., 321 (1963) 120.
- 39 H. Gilman und R.G. Jones, J. Amer. Chem. Soc., 72 (1950) 1760.
- 40 A.G. Pozamantir und M.L. Genusov, Zh. Obshch. Khim., 32 (1962) 1175.